CueR activates transcription through a DNA distortion mechanism

NATURE CHEMICAL BIOLOGY(2020)

引用 38|浏览14
暂无评分
摘要
The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein–protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. The structures reveal that this TF promotes productive promoter–polymerase association without canonical protein–protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein–DNA interactions: these induce four distinct kinks that ultimately position the −10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.
更多
查看译文
关键词
Biochemistry,DNA,Metals,Proteins,RNA,Chemistry/Food Science,general,Biochemical Engineering,Cell Biology,Bioorganic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要