A high resolution view of an adolescent flavivirus

biorxiv(2020)

引用 3|浏览4
暂无评分
摘要
Mosquito-transmitted flaviviruses, such as Dengue virus (DENV) or Zika virus (ZIKV), are responsible for significant economic damage and human misery. In infected cells, flaviviruses first assemble into an immature form within the endoplasmatic reticulum (ER), and then undergo further processing by furin protease in the trans-Golgi. Despite substantial efforts, previous cryogenic electron microscopy (cryo-EM) studies of immature flaviviruses were restricted to low to medium resolutions, limiting our understanding of maturation. To better grasp the process of maturation, we have carried out cryo-EM reconstructions of immature Spondweni virus (SPOV), an emerging human flavivirus belonging to the same serogroup as ZIKV (~75% amino acid identity). By combining localized reconstruction and focused refinement, we were able to improve the resolution to 3.8 Å, yielding unprecedented insight into the immature form. The structure elucidates how, at neutral pH, polar interactions conceal the furin recognition site within trimeric envelope (E) protein spikes. Furthermore, we identify how a strictly conserved pH sensor anchors the precursor membrane (prM) protein to immature E. We reconstructed mature forms of SPONV and DENV to 2.6Å and 3.1Å, respectively. Comparison with immature virus shows a conserved binding pocket for a lipid headgroup, which forms as a consequence of the rearrangement of amphipathic stem-helices of E. We propose a structural role for the pocket and suggest it stabilizes mature E. Taken together, our data suggest a compelling rationale for low-pH triggered conformational rearrangement in the Golgi, which occurs during flavivirus maturation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要