WeChat Mini Program
Old Version Features

Toward Robustness and Privacy in Federated Learning: Experimenting with Local and Central Differential Privacy.

arXivorg(2020)

Cited 44|Views49
Abstract
Federated Learning (FL) allows multiple participants to collaboratively train machine learning models by keeping their datasets local and exchanging model updates. Recent work has highlighted weaknesses related to robustness and privacy in FL, including backdoor, membership and property inference attacks. In this paper, we investigate whether and how Differential Privacy (DP) can be used to defend against attacks targeting both robustness and privacy in FL. To this end, we present a first-of-its-kind experimental evaluation of Local and Central Differential Privacy (LDP/CDP), assessing their feasibility and effectiveness. We show that both LDP and CDP do defend against backdoor attacks, with varying levels of protection and utility, and overall more effectively than non-DP defenses. They also mitigate white-box membership inference attacks, which our work is the first to show. Neither, however, defend against property inference attacks, prompting the need for further research in this space. Overall, our work also provides a re-usable measurement framework to quantify the trade-offs between robustness/privacy and utility in differentially private FL.
More
Translated text
Key words
Differential Privacy,Federated Learning,Location Privacy,Robustness,Secure Computation
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined