QUBIC V: Cryogenic system design and performance

S. Masi,E. S. Battistelli,P. de Bernardis,C. Chapron,F. Columbro,G. D'Alessandro,M. De Petris,L. Grandsire,J. -Ch. Hamilton,S. Marnieros,L. Mele,A. May,A. Mennella,C. O'Sullivan,A. Paiella,F. Piacentini,M. Piat,L. Piccirillo,G. Presta,A. Schillaci,A. Tartari, J. -P. Thermeau,S. A. Torchinsky, F. Voisin,M. Zannoni, P. Ade,J. G. Alberro,A. Almela,G. Amico,L. H. Arnaldi,D. Auguste,J. Aumont,S. Azzoni, S. Banfi, B. Bélier,A. Baù,D. Bennett, L. Bergé,J. -Ph. Bernard,M. Bersanelli,M. -A. Bigot-Sazy,J. Bonaparte,J. Bonis, E. Bunn,D. Burke, D. Buzi,F. Cavaliere, P. Chanial,R. Charlassier,A. C. Cobos Cerutti,A. Coppolecchia,G. De Gasperis,M. De Leo,S. Dheilly,C. Duca,L. Dumoulin, A. Etchegoyen,A. Fasciszewski,L. P. Ferreyro,D. Fracchia,C. Franceschet,M. M. Gamboa Lerena, K. M. Ganga,B. García,M. E. García Redondo,M. Gaspard,D. Gayer,M. Gervasi,M. Giard,V. Gilles, Y. Giraud-Heraud,M. Gómez Berisso,M. González,M. Gradziel,M. R. Hampel,D. Harari, S. Henrot-Versillé,F. Incardona,E. Jules,J. Kaplan,C. Kristukat,L. Lamagna, S. Loucatos,T. Louis,B. Maffei,W. Marty,A. Mattei,M. McCulloch,D. Melo, L. Montier,L. Mousset,L. M. Mundo,J. A. Murphy,J. D. Murphy,F. Nati,E. Olivieri,C. Oriol, F. Pajot,A. Passerini,H. Pastoriza,A. Pelosi,C. Perbost,M. Perciballi,F. Pezzotta,G. Pisano, M. Platino, G. Polenta, D. Prêle,R. Puddu, D. Rambaud, E. Rasztocky,P. Ringegni, G. E. Romero,J. M. Salum,C. G. Scóccola,S. Scully,S. Spinelli,G. Stankowiak,M. Stolpovskiy,A. D. Supanitsky, P. Timbie,M. Tomasi,G. Tucker,C. Tucker,D. Viganò,N. Vittorio, F. Wicek,M. Wright,A. Zullo

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(2022)

引用 13|浏览103
暂无评分
摘要
Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (similar to 40 cm(2)sr), large volume (similar to 4 m(3)) and large mass (similar to 165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to similar to 3K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a He-4 evaporator cooling the interferometer beam combiner to -1K and a He-3 evaporator cooling the focal-plane detector arrays to similar to 0.3K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a similar to 10K base temperature. The system has been tilted to cover the boresight elevation range 20 degrees-90 degrees without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.
更多
查看译文
关键词
CMBR detectors, CMBR experiments, CMBR polarisation, gravitational waves and CMBR polarization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要