Ethylene Glycol Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance

Chemistry of Materials(2020)

引用 83|浏览14
暂无评分
摘要
Replacing the alkyl side chains on conventional semiconducting polymers with ethylene glycol (EG)-based chains is a successful strategy in the molecular design of mixed conduction materials for bioelectronic devices, including organic electrochemical transistors (OECTs). Such polymers have demonstrated the capability to conduct both ionic and electronic charges and can offer superior performance compared to the most commonly used active material, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). While many research efforts have been dedicated to optimizing OECT performance through the engineering of the semiconducting polymers’ conjugated backbones, variation of the EG chain length has been investigated considerably less. In this work, a series of glycolated polythiophenes with pendant EG chains spanning two to six EG repeat units was synthesized and the electrochemical and structural …
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要