# Image segmentation via Cellular Automata

arxiv（2020）

摘要

In this paper, we propose a new approach for building cellular automata to solve real-world segmentation problems. We design and train a cellular automaton that can successfully segment high-resolution images. We consider a colony that densely inhabits the pixel grid, and all cells are governed by a randomized update that uses the current state, the color, and the state of the $3\times 3$ neighborhood. The space of possible rules is defined by a small neural network. The update rule is applied repeatedly in parallel to a large random subset of cells and after convergence is used to produce segmentation masks that are then back-propagated to learn the optimal update rules using standard gradient descent methods. We demonstrate that such models can be learned efficiently with only limited trajectory length and that they show remarkable ability to organize the information to produce a globally consistent segmentation result, using only local information exchange. From a practical perspective, our approach allows us to build very efficient models -- our smallest automata use less than 10,000 paramaters to solve complex segmentation tasks.

更多查看译文

关键词

cellular automata,segmentation,image

AI 理解论文

溯源树

样例

生成溯源树，研究论文发展脉络

Chat Paper

正在生成论文摘要