Resolving the fibrotic niche of human liver cirrhosis using single cell transcriptomics

BioRxiv(2019)

引用 8|浏览53
暂无评分
摘要
Currently there are no effective antifibrotic therapies for liver cirrhosis, a major killer worldwide. To obtain a cellular resolution of directly-relevant pathogenesis and to inform therapeutic design, we profile the transcriptomes of over 100,000 primary human single cells, yielding molecular definitions for the major non-parenchymal cell types present in healthy and cirrhotic human liver. We uncover a novel scar-associated TREM2+CD9+ macrophage subpopulation with a fibrogenic phenotype, that has a distinct differentiation trajectory from circulating monocytes. In the endothelial compartment, we show that newly-defined ACKR1+ and PLVAP+ endothelial cells expand in cirrhosis and are topographically located in the fibrotic septae. Multi-lineage ligand-receptor modelling of specific interactions between the novel scar-associated macrophages, endothelial cells and collagen-producing myofibroblasts in the fibrotic niche, reveals intra-scar activity of several major pathways which promote hepatic fibrosis. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides the conceptual framework required to discover rational therapeutic targets in liver cirrhosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要