Ju l 2 01 8 Three-boson spectrum in the presence of 1 D spin-orbit coupling : Efimov ’ s generalized radial scaling law

Q. Guan,D. Blume

semanticscholar(2018)

引用 0|浏览0
暂无评分
摘要
Spin-orbit coupled cold atom systems, governed by Hamiltonians that contain quadratic kinetic energy terms typical for a particle’s motion in the usual Schrödinger equation and linear kinetic energy terms typical for a particle’s motion in the usual Dirac equation, have attracted a great deal of attention recently since they provide an alternative route for realizing fractional quantum Hall physics, topological insulators, and spintronics physics. The present work focuses on the threeboson system in the presence of 1D spin-orbit coupling, which is most relevant to ongoing cold atom experiments. In the absence of spin-orbit coupling terms, the three-boson system exibits the Efimov effect: the entire energy spectrum is uniquely determined by the s-wave scattering length and a single three-body parameter, i.e., using one of the energy levels as input, the other energy levels can be obtained via Efimov’s radial scaling law, which is intimately tied to a discrete scaling symmetry. It is demonstrated that the discrete scaling symmetry persists in the presence of 1D spinorbit coupling, implying the validity of a generalized radial scaling law in five-dimensional space. The dependence of the energy levels on the scattering length, spin-orbit coupling parameters, and center-of-mass momentum is discussed. It is conjectured that three-body systems with other types of spin-orbit coupling terms are also governed by generalized radial scaling laws, provided the system exhibits the Efimov effect in the absence of spin-orbit coupling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要