WeChat Mini Program
Old Version Features

Mismatch-tolerant, Alignment-Free Sequence Classification Using Multiple Spaced Seeds and Multiindex Bloom Filters

Proceedings of the National Academy of Sciences(2020)

BC Canc

Cited 15|Views44
Abstract
Alignment-free classification tools have enabled high-throughput processing of sequencing data in many bioinformatics analysis pipelines primarily due to their computational efficiency. Originally k-mer based, such tools often lack sensitivity when faced with sequencing errors and polymorphisms. In response, some tools have been augmented with spaced seeds, which are capable of tolerating mismatches. However, spaced seeds have seen little practical use in classification because they bring increased computational and memory costs compared to methods that use k-mers. These limitations have also caused the design and length of practical spaced seeds to be constrained, since storing spaced seeds can be costly. To address these challenges, we have designed a probabilistic data structure called a multiindex Bloom Filter (miBF), which can store multiple spaced seed sequences with a low memory cost that remains static regardless of seed length or seed design. We formalize how to minimize the false-positive rate of miBFs when classifying sequences from multiple targets or references. Available within BioBloom Tools, we illustrate the utility of miBF in two use cases: read-binning for targeted assembly, and taxonomic read assignment. In our benchmarks, an analysis pipeline based on miBF shows higher sensitivity and specificity for read-binning than sequence alignment-based methods, also executing in less time. Similarly, for taxonomic classification, miBF enables higher sensitivity than a conventional spaced seed-based approach, while using half the memory and an order of magnitude less computational time.
More
Translated text
Key words
probabilistic data structures,spaced seeds,sequence classification,Bloom filters,alignment-free
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined