Better Safe Than Sorry - Implementing Reliable Health Data Anonymization.
PubMed(2020)
Tech Univ Munich
Abstract
Modern biomedical research is increasingly data-driven. To create the required big datasets, health data needs to be shared or reused, which often leads to privacy challenges. Data anonymization is an important protection method where data is transformed such that privacy guarantees can be provided according to formal models. For applications in practice, anonymization methods need to be integrated into scalable and reliable tools. In this work, we tackle the problem of achieving reliability. Privacy models often involve mathematical definitions using real numbers which are typically approximated using floating-point numbers when implemented as software. We study the effect on the privacy guarantees provided and present a reliable computing framework based on fractional and interval arithmetic for improving the reliability of implementations. Extensive evaluations demonstrate that reliable data anonymization is practical and that it can be achieved with minor impacts on executions times and data utility.
MoreTranslated text
Key words
data protection,anonymization,reliable computing
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined