Moraxella catarrhalis phase-variable loci show differences in expression during conditions relevant to disease.

PLOS ONE(2020)

引用 3|浏览34
暂无评分
摘要
Moraxella catarrhalis is a human-adapted, opportunistic bacterial pathogen of the respiratory mucosa. Although asymptomatic colonization of the nasopharynx is common, M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with acute exacerbations of chronic obstructive pulmonary disease in adults. Phase variation is the high frequency, random, reversible switching of gene expression that allows bacteria to adapt to different host microenvironments and evade host defences, and is most commonly mediated by simple DNA sequence repeats. Bioinformatic analysis of five closed M. catarrhalis genomes identified 17 unique simple DNA sequence repeat tracts that were variable between strains, indicating the potential to mediate phase variable expression of the associated genes. Assays designed to assess simple sequence repeat variation under conditions mimicking host infection demonstrated that phase variation of uspA1 (ubiquitous surface protein A1) from high to low expression occurs over 72 hours of biofilm passage, while phase variation of uspA2 (ubiquitous surface protein A2) to high expression variants occurs during repeated exposure to human serum, as measured by mRNA levels. We also identify and confirm the variable expression of two novel phase variable genes encoding a Type III DNA methyltransferase (modO), and a conserved hypothetical permease (MC25239_RS00020). These data reveal the repertoire of phase variable genes mediated by simple sequence repeats in M. catarrhalis and demonstrate that modulation of expression under conditions mimicking human infection is attributed to changes in simple sequence repeat length.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要