High oxide ion and proton conductivity in a disordered hexagonal perovskite.

NATURE MATERIALS(2020)

引用 117|浏览45
暂无评分
摘要
Fast oxide ion and proton conductors at intermediate temperature are required to improve the performance of ceramic fuel cells. An undoped hexagonal perovskite Ba7Nb4MoO20 electrolyte with high proton and oxide ion conductivity (4.0 mS cm(-1)) at 510 degrees C is now reported. Oxide ion and proton conductors, which exhibit high conductivity at intermediate temperature, are necessary to improve the performance of ceramic fuel cells. The crystal structure plays a pivotal role in defining the ionic conduction properties, and the discovery of new materials is a challenging research focus. Here, we show that the undoped hexagonal perovskite Ba7Nb4MoO20 supports pure ionic conduction with high proton and oxide ion conductivity at 510 degrees C (the bulk conductivity is 4.0 mS cm(-1)), and hence is an exceptional candidate for application as a dual-ion solid electrolyte in a ceramic fuel cell that will combine the advantages of both oxide ion and proton-conducting electrolytes. Ba7Nb4MoO20 also showcases excellent chemical and electrical stability. Hexagonal perovskites form an important new family of materials for obtaining novel ionic conductors with potential applications in a range of energy-related technologies.
更多
查看译文
关键词
Fuel cells,Solid-state chemistry,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要