JointDNN: an Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services
IEEE TRANSACTIONS ON MOBILE COMPUTING(2021)
Univ Southern Calif
Abstract
Deep learning models are being deployed in many mobile intelligent applications. End-side services, such as intelligent personal assistants, autonomous cars, and smart home services often employ either simple local models on the mobile or complex remote models on the cloud. However, recent studies have shown that partitioning the DNN computations between the mobile and cloud can increase the latency and energy efficiencies. In this paper, we propose an efficient, adaptive, and practical engine, JointDNN, for collaborative computation between a mobile device and cloud for DNNs in both inference and training phase. JointDNN not only provides an energy and performance efficient method of querying DNNs for the mobile side but also benefits the cloud server by reducing the amount of its workload and communications compared to the cloud-only approach. Given the DNN architecture, we investigate the efficiency of processing some layers on the mobile device and some layers on the cloud server. We provide optimization formulations at layer granularity for forward- and backward-propagations in DNNs, which can adapt to mobile battery limitations and cloud server load constraints and quality of service. JointDNN achieves up to 18 and 32 times reductions on the latency and mobile energy consumption of querying DNNs compared to the status-quo approaches, respectively.
MoreTranslated text
Key words
Deep neural networks,intelligent services,mobile computing,cloud computing
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined