Imaging of a Fluid Injection Process Using Geophysical Data - A Didactic Example
GEOPHYSICS(2020)
Lawrence Berkeley Natl Lab
Abstract
In many subsurface industrial applications, fluids are injected into or withdrawn from a geologic formation. It is of practical interest to quantify precisely where, when, and by how much the injected fluid alters the state of the subsurface. Routine geophysical monitoring of such processes attempts to image the way that geophysical properties, such as seismic velocities or electrical conductivity, change through time and space and to then make qualitative inferences as to where the injected fluid has migrated. The more rigorous formulation of the time-lapse geophysical inverse problem forecasts how the subsurface evolves during the course of a fluid-injection application. Using time-lapse geophysical signals as the data to be matched, the model unknowns to be estimated are the multiphysics forward-modeling parameters controlling the fluid-injection process. Properly reproducing the geo-physical signature of the flow process, subsequent simulations can predict the fluid migration and alteration in the subsurface. The dynamic nature of fluid-injection processes renders imaging problems more complex than conventional geophysical imaging for static targets. This work intents to clarify the related hydrogeophysical parameter estimation concepts.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined