Neutron Yield Enhancement And Suppression By Magnetization In Laser-Driven Cylindrical Implosions

PHYSICS OF PLASMAS(2020)

引用 13|浏览27
暂无评分
摘要
In inertial confinement fusion, an externally applied magnetic field can reduce heat losses in the compressing fuel thereby increasing neutron-averaged ion temperatures and neutron yields. However, magnetization is only beneficial if the magnetic pressure remains negligible compared to the fuel pressure. Experiments and three-dimensional magneto-hydrodynamic simulations of cylindrical implosions on the OMEGA laser show ion temperature and neutron yield enhancements of up to 44% and 67%, respectively. As the applied axial magnetic field is increased to nearly 30T, both experiments and simulations show yield degradation. For magnetized, cylindrical implosions, there exists an optimal magnetic field that maximizes the increase in yield. Limiting the fuel convergence ratio by preheating the fuel can further increase the benefit of magnetization. The results demonstrate that it is possible to create a plasma with a density of order1g / cm 3 and an ion temperature greater than 1keV with a magnetic pressure comparable to the thermal pressure, a new regime for laser-produced plasmas on OMEGA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要