Image Registration Algorithm for Sequence Pathology Slices of Pulmonary Nodule
2019 8TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE)(2019)
Zhengzhou Univ
Abstract
Registration of pathological section images is an important part of three-dimensional reconstruction of sections. In this paper, a registration method was proposed to solve the problem of mismatching of pathological section images of pulmonary nodules. Firstly, rough matching is performed, and the feature points are extracted according to the scale-invariant feature transform (SIFT) algorithm. Then fast sparse coding (FSC) is used for fine matching to eliminate mismatched pairs. The algorithm presented in this paper is applied to the registration between sequence sections of pulmonary nodules. The experimental results show that the algorithm can effectively find more matching point pairs, accurately remove the false matching point pairs, and significantly improve the registration accuracy.
MoreTranslated text
Key words
pathological section images,image registration,pulmonary nodule,scale-invariant feature transform (SIFT),fast sparse coding (FSC)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined