Model Systems to Elucidate Minimum Requirements for Protected Areas Networks
Scientific reports(2019)SCI 3区
Department of Biology
Abstract
In conservation biology there have been varying answers to the question of “How much land to protect?” Simulation models using decision-support software such as Marxan show that the answer is sensitive to target type and amount, and issues of scale. We used a novel model system for landscape ecology to test empirically whether the minimum conservation requirements to represent all species at least once are consistent across replicate landscapes, and if not, whether these minimum conservation requirements are linked to biodiversity patterns. Our model system of replicated microcosms could be scaled to larger systems once patterns and mechanisms are better understood. We found that the minimum representation requirements for lichen species along the microlandscapes of tree trunks were remarkably consistent (4–6 planning units) across 24 balsam fir trees in a single stand, as well as for 21 more widely dispersed fir and yellow birch trees. Variation in minimum number of planning units required correlated positively with gamma diversity. Our results demonstrate that model landscapes are useful to determine whether minimum representation requirements are consistent across different landscapes, as well as what factors (life history, diversity patterns, dispersal strategies) affect variation in these conservation requirements. This system holds promise for further investigation into factors that should be considered when developing conservation designs, thus yielding scientifically-defensible requirements that can be applied more broadly.
MoreTranslated text
Key words
Biodiversity,Conservation biology,Science,Humanities and Social Sciences,multidisciplinary
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Environmental Science and Pollution Research 2020
被引用8
Microlandscape Experiments: Are They Useful for Scale, Scaling, and Cross-Scale Inference?
Current Landscape Ecology Reports 2022
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话