The 1.28 GHz MeerKAT DEEP2 Image

T. Mauch,W. D. Cotton,J. J. Condon, A. M. Matthews, T. D. Abbott,R. M. Adam, M. A. Aldera,K. M. B. Asad, E. F. Bauermeister, T. G. H. Bennett, H. Bester, D. H. Botha, L. R. S. Brederode, Z. B. Brits, S. J. Buchner, J. P. Burger, F. Camilo, J. M. Chalmers, T. Cheetham,D. de Villiers,M. S. de Villiers, M. A. Dikgale-Mahlakoana,L. J. du Toit, S. W. P. Esterhuyse, G. Fadana,B. L. Fanaroff, S. Fataar,S. February,B. S. Frank, R. R. G. Gamatham,M. Geyer,S. Goedhart, S. Gounden, S. C. Gumede, I. Heywood, M. J. Hlakola, J. M. G. Horrell, B. Hugo, A. R. Isaacson, G. I. G. Józsa,J. L. Jonas, R. P. M. Julie,F. B. Kapp, V. A. Kasper, J. S. Kenyon, P. P. A. Kotzé,N. Kriek, H. Kriel, T. W. Kusel,R. Lehmensiek, A. Loots, R. T. Lord, B. M. Lunsky, K. Madisa, L. G. Magnus, J. P. L. Main, J. A. Malan, J. R. Manley, S. J. Marais, A. Martens,B. Merry, R. Millenaar, N. Mnyandu, I. P. T. Moeng, O. J. Mokone,T. E. Monama, M. C. Mphego, W. S. New, B. Ngcebetsha, K. J. Ngoasheng, M. T. O. Ockards,N. Oozeer,A. J. Otto, A. A. Patel, A. Peens-Hough,S. J. Perkins,A. J. T. Ramaila, Z. R. Ramudzuli, R. Renil, L. L. Richter, A. Robyntjies, S. Salie, C. T. G. Schollar,L. C. Schwardt, M. Serylak, R. Siebrits, S. K. Sirothia,O. M. Smirnov, L. Sofeya, G. Stone, B. Taljaard,C. Tasse,I. P. Theron,A. J. Tiplady, O. Toruvanda, S. N. Twum,T. J. van Balla,A. van der Byl,C. van der Merwe,V. Van Tonder, B. H. Wallace, M. G. Welz, L. P. Williams, B. Xaia

ASTROPHYSICAL JOURNAL(2019)

引用 77|浏览19
暂无评分
摘要
We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one ≈ 68' FWHM primary beam area with 7.6” FWHM resolution and 0.55 ± 0.01 μJy/beam rms noise. Its J2000 center position α=04^h 13^m 26.4^s, δ=-80^∘ 00' 00” was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u,v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 ≲log[S(Jy)] ≲ -4.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要