A Case Study for an Accelerated DCNN on FPGA-Based Embedded Distributed System
IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum(2019)
Politecn Milan
Abstract
Face Detection (FD) recently became the base of multiple applications requiring low latency but also with limited resources and energy budgets. Deep Convolutional Neural Networks (DCNNs) are especially accurate in FD, but latency requirements and energy budgets call for Field Programmable Gate Arrays (FPGAs)-based solutions, trading flexibility and efficiency. Nonetheless, the offer of FPGAs solutions is limited and different chips often require expensive re-design phases, while developers desire solutions whose resources can scale proportionally to the demands. Therefore, this work presents an FD solution based on a DCNN on a distributed, embedded system with FPGAs, proposing a general approach to reduce the DCNN size and to design its FPGA cores and investigating its accuracy, performance, and energy efficiency.
MoreTranslated text
Key words
DCNN,CNN,Quantization,Embedded,FPGA,Distributed,Face detection,PYNQ-Z1,HDL,HLS
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined