Circadian and circannual timescales interact to generate seasonal changes in immune function.

Kenneth G Onishi, Andrew C Maneval,Erin C Cable,Mary Claire Tuohy, Andrew J Scasny,Evelina Sterina,Jharnae A Love, Jonathan P Riggle, Leah K Malamut, Aashna Mukerji, Jennifer S Novo, Abena Appah-Sampong, Joseph B Gary,Brian J Prendergast

Brain, behavior, and immunity(2019)

引用 15|浏览4
暂无评分
摘要
Annual changes in day length enhance or suppress diverse aspects of immune function, giving rise to seasonal cycles of illness and mortality. The daily light-dark cycle also entrains circadian rhythms in immunity. Most published reports on immunological seasonality rely on measurements or interventions performed only at one point in the day. Because there can be no perfect matching of circadian phase across photoperiods of different duration, the manner in which these timescales interact to affect immunity is not understood. We examined whether photoperiodic changes in immune function reflect phenotypic changes that persist throughout the daily cycle, or merely reflect photoperiodic shifts in the circadian phase alignment of immunological rhythms. Diurnal rhythms in blood leukocyte trafficking, infection induced sickness responses, and delayed-type hypersensitivity skin inflammatory responses were examined at high-frequency sampling intervals (every 3 h) in Siberian hamsters (Phodopus sungorus) following immunological adaptation to summer or winter photoperiods. Photoperiod profoundly enhanced or suppressed immune function, in a trait-specific manner, and we were unable to identify a phase alignment of diurnal waveforms which eliminated these enhancing and suppressing effects of photoperiod. These results support the hypothesis that seasonal timescales affect immunity via mechanisms independent of circadian entrainment of the immunological circadian waveform.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要