A Runtime Monitoring Framework to Enforce Invariants on Reinforcement Learning Agents Exploring Complex Environments
2019 IEEE/ACM 2nd International Workshop on Robotics Software Engineering (RoSE)(2019)
Chalmers
Abstract
Without prior knowledge of the environment, a software agent can learn to achieve a goal using machine learning. Model-free Reinforcement Learning (RL) can be used to make the agent explore the environment and learn to achieve its goal by trial and error. Discovering effective policies to achieve the goal in a complex environment is a major challenge for RL. Furthermore, in safety-critical applications, such as robotics, an unsafe action may cause catastrophic consequences in the agent or in the environment. In this paper, we present an approach that uses runtime monitoring to prevent the reinforcement learning agent to perform "wrong" actions and to exploit prior knowledge to smartly explore the environment. Each monitor is de?ned by a property that we want to enforce to the agent and a context. The monitors are orchestrated by a meta-monitor that activates and deactivates them dynamically according to the context in which the agent is learning. We have evaluated our approach by training the agent in randomly generated learning environments. Our results show that our approach blocks the agent from performing dangerous and safety-critical actions in all the generated environments. Besides, our approach helps the agent to achieve its goal faster by providing feedback and shaping its reward during learning.
MoreTranslated text
Key words
runtime monitoring,reinforcement learning,reward shaping,LTL invariants
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined