A Staggered Scheme for the Euler Equations
Springer Proceedings in Mathematics & Statistics Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems(2023)
Université Côte d’Azur
Abstract
We extend to the full Euler system the scheme introduced in [Berthelin, Goudon, Minjeaud, Math. Comp. 2014] for solving the barotropic Euler equations. This finite volume scheme is defined on staggered grids with numerical fluxes derived in the spirit of kinetic schemes. The difficulty consists in finding a suitable treatment of the energy equation while density and internal energy on the one hand, and velocity on the other hand, are naturally defined on dual locations. The proposed scheme uses the density, the velocity and the internal energy as computational variables and stability conditions are identified in order to preserve the positivity of the discrete density and internal energy. Moreover, we define averaged energies which satisfy local conservation equations. Finally, we provide numerical simulations of Riemann problems to illustrate the behaviour of the scheme.
MoreTranslated text
Key words
Finite volumes,Finite elements,Staggered discretizations,Euler equations,Compressible flows,Analysis
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined