Measuring proteomes with long strings: A new, unconstrained paradigm in mass spectrum interpretation

bioRxiv(2018)

引用 3|浏览17
暂无评分
摘要
Thousands of protein post-translational modifications (PTMs) dynamically impact nearly all cellular functions. Mass spectrometry is well suited to PTM identification, but proteome-scale analyses are biased towards PTMs with existing enrichment methods. To measure the full landscape of PTM regulation, software must overcome two fundamental challenges: intractably large search spaces and difficulty distinguishing correct from incorrect identifications. Here, we describe TagGraph, software that overcomes both challenges with a string-based search method orders of magnitude faster than current approaches, and probabilistic validation model optimized for PTM assignments. When applied to a human proteome map, TagGraph tripled confident identifications while revealing thousands of modification types on nearly one million sites spanning the proteome. We expand known sites by orders of magnitude for highly abundant yet understudied PTMs such as proline hydroxylation, and derive tissue-specific insight into these PTMs9 roles. TagGraph expands our ability to survey the full landscape of PTM function and regulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要