Reprogramming of histone methylation controls the differentiation of monocytes into macrophages

FEBS JOURNAL(2017)

引用 11|浏览6
暂无评分
摘要
Subset heterogeneity of the mononuclear phagocyte system (MPS) is controlled by defined transcriptional networks and programs; however, the dynamic establishment of programs that control broad, orchestrated expression of transcription factors (TFs) during the progression of monocyte-into-phagocyte (MP) differentiation remains largely unexplored. By using chromatin immunoprecipitation assays, we show the extensive trimethylation of histone H3 lysine 4 (H3K4me3) as well as histone H3 lysine 27 (H3K27me3) occupancy with broad footprints at the promoters of MP differentiation-related TFs, such as HOXA and FOXO genes, KLF4, IRF8 and others. The rapid repression of HOXA genes was closely associated with the MP differentiation program. H3K4me3 participates in regulating HOXA genes at mild and terminal differentiation periods, while H3K27me3 maintains low-level expression of HOXA genes at phagocytic maintenance periods. Furthermore, the reprogramming of H3K27me3 plays a major role in the up-regulation of KLF4 and FOXO genes during MP differentiation. Importantly, the pharmacological inhibition of H3K4me3 and/or H3K27me3 strikingly promotes the differentiation programs of THP-1 and K562 cells. Together, these findings elucidate mechanisms crucial to the dynamic establishment of epigenetic memory, which is central to the maintenance of the MP differentiation blockade.
更多
查看译文
关键词
differentiation,monocyte,PcG,phagocyte,TrxG
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要