WeChat Mini Program
Old Version Features

Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging Parameters Predict Pathological Classification in Thymic Epithelial Tumors.

Oncotarget(2017)

Fourth Mil Med Univ

Cited 10|Views29
Abstract
We evaluated the performance of intravoxel incoherent motion (IVIM) parameters for preoperatively predicting the subtype and Masaoka stage of thymic epithelial tumors (TETs). Seventy-seven patients with pathologically confirmed TETs underwent a diffusion weighted imaging (DWI) sequence with 9 b values. Differences in the slow diffusion coefficient (D), fast perfusion coefficient (D*), and perfusion fraction (f) IVIM parameters, as well as the multi b-value fitted apparent diffusion coefficient (ADCmb), were compared among patients with low-risk (LRT) and high-risk thymomas (HRT) and thymic carcinomas (TC), and between early stage (stages I and II) and advanced stage (stages III and IV) TET patients. ADCmb, D, and D* values were higher in the LRT group than in the HRT or TC group, but did not differ between the HRT and TC groups. The mean ADCmb, D, and D* values were higher in the early stage TETs group than the advanced stage TETs group. The f values did not differ among the groups. These results suggest that IVIM DWI could be used to preoperatively predict subtype and Masaoka stage in TET patients.
More
Translated text
Key words
thymic epithelial tumor,intravoxel incoherent motion,DWI,masaoka stage,pathological type
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined