A User-Friendly Interactive Framework for Unsteady Fluid Flow Segmentation and Visualization.
Journal of Visualization(2018)
Universidade de São Paulo (USP)
Abstract
While vector fields are essential to simulate a large amount of natural phenomena, the difficulty to identify patterns and predict behaviors makes the visual segmentation in simulations an attractive and powerful tool. In this paper, we present a novel user-steered segmentation framework to cope with steady as well as unsteady vector fields on fluid flow simulations. Given a discrete vector field, our approach extracts multi-valued features from the field by exploiting its streamline structures so that these features are mapped to a visual space through a multidimensional projection technique. From an easy-to-handle interface, the user can interact with the projected data so as to partition and explore the most relevant vector features in a guidance frame of the simulation. Besides navigating and visually mining structures of interest, the interactivity with the projected data also allows the user to progressively enhance the segmentation result according to his insights. Finally, to successfully deal with unsteady simulations, the segments previously annotated by the user are used as a training set for a Support Vector Machine approach that classifies the remaining frames in the flow. We attest the effectiveness and versatility of our methodology throughout a set of classical physical-inspired applications on fluid flow simulations as depicted in the experiment results section.
MoreTranslated text
Key words
Flow segmentation,Time-varying visualization,Vector field,Interactive tools,Machine learning
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined