WeChat Mini Program
Old Version Features

Detecting Topological Changes in Dynamic Community Networks

Computing Research Repository (CoRR)(2017)

University of Colorado at Boulder

Cited 23|Views5
Abstract
The study of time-varying (dynamic) networks (graphs) is of fundamental importance for computer network analytics. Several methods have been proposed to detect the effect of significant structural changes in a time series of graphs. The main contribution of this work is a detailed analysis of a dynamic community graph model. This model is formed by adding new vertices, and randomly attaching them to the existing nodes. It is a dynamic extension of the well-known stochastic blockmodel. The goal of the work is to detect the time at which the graph dynamics switches from a normal evolution -- where balanced communities grow at the same rate -- to an abnormal behavior -- where communities start merging. In order to circumvent the problem of decomposing each graph into communities, we use a metric to quantify changes in the graph topology as a function of time. The detection of anomalies becomes one of testing the hypothesis that the graph is undergoing a significant structural change. In addition the the theoretical analysis of the test statistic, we perform Monte Carlo simulations of our dynamic graph model to demonstrate that our test can detect changes in graph topology.
More
Translated text
Key words
Community Structure,Network Dynamics
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined