Dual-Data Rate Transpose-Memory Architecture Improves the Performance, Power and Area of Signal-Processing Systems

Signal Processing Systems(2016)

引用 3|浏览30
暂无评分
摘要
This paper presents a novel type of high-speed and area-efficient register-based transpose memory architecture enabled by reporting on both edges of the clock. The proposed new architecture, by using the double-edge triggered registers, doubles the throughput and increases the maximum frequency by avoiding some of the combinational circuit used in prior work. The proposed design is evaluated with both FPGA and ASIC flow in 28/32nm technology. The experimental results show that the proposed memory achieves almost 4X improvement in throughput while consuming 46 % less area with the FPGA implementations compared to prior work. For ASIC implementations, it achieves more than 60 % area reduction and at least 2X performance improvement while burning 60 % less power compared to other register-based designs implemented with the same flow. As an example, a proposed 8X8 transpose memory with 12-bit input/output resolution is able to achieve a throughput of 107.83Gbps at 647MHz by taking only 140 slices on a Virtex-7 Xilinx FPGA platform, and achieve a throughput of 88.2Gbps at 529MHz by taking 0.024mm 2 silicon area for ASIC. The proposed transpose memory is integrated in both 2D-DCT and 2D-IDCT blocks for signal processing applications on the same FPGA platform. The new architecture allows a 3.5X speed-up in performance for the 2D-DCT algorithm, compared to the previous work, while consuming 28 % less area, and 2D-IDCT achieves a 3X speed-up while consuming 20 % less area.
更多
查看译文
关键词
Transpose,FPGA,ASIC,Signal processing,Adaptive systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要