WeChat Mini Program
Old Version Features

Dynamic Tree-Based Large-Deformation Image Registration for Multi-atlas Segmentation.

Lecture Notes in Computer Science(2015)

Univ North Carolina Chapel Hill

Cited 1|Views20
Abstract
Multi-atlas segmentation is a powerful approach to automated anatomy delineation via fusing label information from a set of spatially normalized atlases. For simplicity, many existing methods perform pairwise image registration, leading to inaccurate segmentation especially when shape variation is large. In this paper, we propose a dynamic tree-based strategy for effective large-deformation registration and multiatlas segmentation. To deal with local minima caused by large shape variation, coarse estimates of deformations are first obtained via alignment of automatically localized landmark points. A dynamic tree capturing the structural relationships between images is then used to further reduce misalignment errors. Validation on two real human brain datasets, ADNI and LPBA40, shows that our method significantly improves registration and segmentation accuracy.
More
Translated text
Key words
Segmentation Image, Image Registration, Target Image, Landmark Point, Dynamic Tree
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined