WeChat Mini Program
Old Version Features

Optimized K-Means Hashing for Approximate Nearest Neighbor Search

Applied Mechanics and Materials(2014)

QINZHEN

Cited 0|Views13
Abstract
Hashing which maps data into binary codes in Hamming space has attracted more and more attentions for approximate nearest neighbor search due to its high efficiency and reduced storage cost. K-means hashing (KH) is a novel hashing method which firstly quantizes the data by codewords and then uses the indices of codewords to encode the data. However, in KH, only the codewords are updated to minimize the quantization error and affinity error while the indices of codewords remain the same after they are initialized. In this paper, we propose an optimized k-means hashing (OKH) method to encode data by binary codes. In our method, we simultaneously optimize the codewords and the indices of them to minimize the quantization error and the affinity error. Our OKH method can find both the optimal codewords and the optiaml indices, and the resulting binary codes in Hamming space can better preserve the original neighborhood structure of the data. Besides, OKH can further be generalized to a product space. Extensive experiments have verified the superiority of OKH over KH and other state-of-the-art hashing methods.
More
Translated text
Key words
Approximate nearest neighbor search,vector quantization,hashing,image retrieval
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined