WeChat Mini Program
Old Version Features

Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis

Cell(2015)

Univ Toronto

Cited 320|Views36
Abstract
Proteomics has proved invaluable in generating large-scale quantitative data; however, the development of systems approaches for examining the proteome in vivo has lagged behind. To evaluate protein abundance and localization on a proteome scale, we exploited the yeast GFP-fusion collection in a pipeline combining automated genetics, high-throughput microscopy, and computational feature analysis. We developed an ensemble of binary classifiers to generate localization data from single-cell measurements and constructed maps of similar to 3,000 proteins connected to 16 localization classes. To survey proteome dynamics in response to different chemical and genetic stimuli, we measure proteome-wide abundance and localization and identified changes over time. We analyzed >20 million cells to identify dynamic proteins that redistribute among multiple localizations in hydroxyurea, rapamycin, and in an rpd3 Delta background. Because our localization and abundance data are quantitative, they provide the opportunity for many types of comparative studies, single cell analyses, modeling, and prediction.
More
Translated text
Key words
Proteomics
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined