WeChat Mini Program
Old Version Features

Long Non-Coding RNA: Multiple Effects on the Differentiation, Maturity and Cell Function of Dendritic Cells

Clinical Immunology(2022)SCI 3区

Nanchang Univ

Cited 10|Views25
Abstract
Long non-coding RNAs (LncRNAs), lacking protein-coding function, modulate immune function by regulating the expression of genes or the function of protein molecules. They participate in epigenetic regulation, interfere with downstream gene transcription acting as a molecular sponge to affect miRNA function, and can combine with proteins to form nucleic acid protein complexes that affect protein function or cell location to regulate genes and regulate immune function. LncRNAs are differentially expressed in immune cells. They affect the maturity, differentiation and activation of immune cells and regulate cytokine release and immune phenotype. They are closely related to immune tolerance and cell migration. Dendritic cells (DCs) are important immune cells with the most robust antigen-presenting function, and have irreplaceable roles in human innate immunity and adaptive immunity. Emerging evidence over the past few years has suggested that LncRNAs influence the differentiation and maturation of DCs and serve as a critical role in the cell phenotype and immune function of DCs. To further understand the role of LncRNAs in the occurrence and development of DC-related diseases, we elaborated the role of LncRNAs in DC immune function, including antigen presentation, T cell activation and proliferation, DC migration. Furthermore, we summarized the impact of pathological factors (tumors, inflammation, autoimmune disease, viral infection) and physiological factors (e.g., age) on the LncRNAs in DCs, and how the changed LncRNAs altered the function and behavior of DCs resulting from the intervention. We hope this review give us have a better understanding of multiple effects of LncRNA on cell function in DCs.
More
Translated text
Key words
LncRNAs,Dendritic cells,Regulatory function,Differentiation,Immune function
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文综述了长非编码RNA(LncRNA)在树突状细胞(DCs)的分化、成熟和细胞功能中的多效性及其在抗原呈递、T细胞激活与增殖、DC迁移等方面的作用,并探讨了病理因素和生理因素对DCs中LncRNA的影响及其改变DCs功能和行为的结果。

方法】:本文通过整合近年来的研究发现,概述了LncRNA在DCs的免疫功能中的角色。

实验】:本文没有详细描述具体的实验方法、数据集名称和实验结果,只是对现有的研究发现进行了综述和整合。