A programmable beam shaping system for tailoring the profile of high fluence laser beams

John E Heebner,Michael Borden,Phil Miller,Christopher J Stolz,Tayyab I Suratwala,Paul J Wegner,M Hermann, M A Henesian,C A Haynam, S P Hunter, Kim Christensen, Nan Wong,Lynn G Seppala,G Brunton, Eddy Tse,Abdul A S Awwal, M Franks,E Marley, K A Williams, Michael Scanlan, T Budge, M Monticelli,D Walmer,S N Dixit, Clay Widmayer, Justin E Wolfe,J D Bude,Kelly Mccarty, Jeanmichel Dinicola

Proceedings of SPIE-The International Society for Optical Engineering(2010)

引用 27|浏览15
暂无评分
摘要
Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, "blocker" obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixelated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.
更多
查看译文
关键词
spatial light modulators,liquid crystal,bismuth silicon oxide,beam shaping,optical damage,high fluence,HEDP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要