WeChat Mini Program
Old Version Features

Finite Free Convolutions of Polynomials

Probability Theory and Related Fields(2022)

École Polytechnique Fédérale de Lausanne

Cited 32|Views160
Abstract
We study three convolutions of polynomials in the context of free probability theory. We prove that these convolutions can be written as the expected characteristic polynomials of sums and products of unitarily invariant random matrices. The symmetric additive and multiplicative convolutions were introduced by Walsh and Szegö in different contexts, and have been studied for a century. The asymmetric additive convolution, and the connection of all of them with random matrices, is new. By developing the analogy with free probability, we prove that these convolutions produce real rooted polynomials and provide strong bounds on the locations of the roots of these polynomials.
More
Translated text
Key words
Free probability,Random matrix theory,Interlacing families,Ramanujan graphs
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined