Mining Approximate Temporal Functional Dependencies with Pure Temporal Grouping in Clinical Databases.
Computers in Biology and Medicine(2014)
Univ Verona
Abstract
Functional dependencies (FDs) typically represent associations over facts stored by a database, such as "patients with the same symptom get the same therapy." In more recent years, some extensions have been introduced to represent both temporal constraints (temporal functional dependencies - TFDs), as "for any given month, patients with the same symptom must have the same therapy, but their therapy may change from one month to the next one," and approximate properties (approximate functional dependencies - AFDs), as "patients with the same symptomgenerallyhave the same therapy." An AFD holds most of the facts stored by the database, enabling some data to deviate from the defined property: the percentage of data which violate the given property is user-defined. According to this scenario, in this paper we introduce approximate temporal functional dependencies (ATFDs) and use them to mine clinical data. Specifically, we considered the need for deriving new knowledge from psychiatric and pharmacovigilance data. ATFDs may be defined and measured either on temporal granules (e.g.grouping data by day, week, month, year) or on sliding windows (e.g.a fixed-length time interval which moves over the time axis): in this regard, we propose and discuss some specific and efficient data mining techniques for ATFDs. We also developed two running prototypes and showed the feasibility of our proposal by mining two real-world clinical data sets. The clinical interest of the dependencies derived considering the psychiatry and pharmacovigilance domains confirms the soundness and the usefulness of the proposed techniques.
MoreTranslated text
Key words
Approximate temporal functional dependency,Temporal granule,Sliding window,Grouping,Psychiatric patients,Pharmacovigilance
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined