Individual C1 domains of PKD3 in phorbol ester-induced plasma membrane translocation of PKD3 in intact cells.

Cellular Signalling(2005)

引用 13|浏览1
暂无评分
摘要
Protein kinase D3 is a novel member of the serine/threonine kinase family PKD. The regulatory region of PKD contains a tandem repeat of C1 domains designated C1a and C1b that bind diacylglycerol and phorbol esters, and are important membrane targeting modules. Here, we investigate the activities of individual C1 domains of PKD3 and their roles in phorbol ester-induced plasma membrane translocation of PKD3. Truncated C1a of PKD3 binds [3H]phorbol 12, 13-dibutyrate with high affinity, but no binding activity is detected for C1b. Meanwhile, mutations in C1a of truncated C1ab of PKD3 lead to the loss of binding affinity, while these mutations in C1b have little impact, indicating that C1a is responsible for most of the phorbol ester-binding activities of PKD3. C1a and C1b of the GFP-tagged full length PKD3 are then mutated to assess their roles in phorbol ester-induced plasma membrane translocation in intact cells. At low concentration of phorbol 12-myristate 13-acetate (PMA), the plasma membrane translocations of the C1a and C1ab mutants are significantly impaired, reflecting an important role of C1a in this process. However, at higher PMA concentrations, all C1 mutants exhibit increased rates of translocation as compared to that of wild-type PKD3, which parallel their enhanced activation by PMA, implying that PKD3 kinase activity affects membrane targeting. In line with this, a constitutive active PKD3-GFP translocates similarly as wild-type PKD3, while a kinase-inactive PKD3 shows little translocation up to 2 μM PMA. In addition, RO 31-8220, a potent PKC inhibitor that blocks PMA-induced PKD3 activation in vivo, significantly attenuates the plasma membrane translocation of wild-type PKD3 at different doses of PMA. Taken together, our results indicate that both C1a and the kinase activity of PKD3 are necessary for the phorbol ester-induced plasma membrane translocation of PKD3. PKC, by directly activating PKD3, regulates its plasma membrane localization in intact cells.
更多
查看译文
关键词
C1 domain,PKD3,PKC,Phorbol ester,Membrane translocation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要