WeChat Mini Program
Old Version Features

脉搏指示连续心排血量监测对感染性休克患者早期目标导向性治疗后续治疗的指导意义

Guangdong Medical Journal(2013)

Guangdong Academy of Medical Sciences

Cited 11|Views50
Abstract
目的探讨脉搏指示连续心排血量(PiCCO)监测对完成初期液体复苏治疗的感染性休克患者后续治疗的指导价值。方法 74例需呼吸机支持的感染性休克患者,行液体复苏达到6h早期目标导向性治疗(EGDT)目标后,在PiCCO监测下继续复苏治疗,根据72h后的复苏效果分为复苏成功组与复苏失败组。比较两组第0、6、24、72h SOFA评分、EGDT目标参数[平均动脉压(MAP)、中心静脉压(CVP)、尿量、中心静脉血氧饱和度(ScvO2)]、PiCCO参数[心脏泵功能指标:心排量(CO)、心指数(CI)、全心射血分数(GEF);容量指标:全心舒张末期容积指数(GEDI)、胸腔内血容积指数(ITBI);肺水指标:血管外肺水指数(EVLWI);后负荷指标:外周血管阻力指数(SVRI)]和净液体量的差异。结果 0h和6h时两组EGDT目标参数和PiCCO各项血流动力学参数及SOFA评分差异无统计学意义。24h时两组MAP、尿量、CVP差异无统计学意义,相对复苏成功组,复苏失败组的PiCCO容量指标(ITBI、GEDI)和EVLWI较高(P<0.05),ScvO2较低(P<0.05),乳酸水平较高(P<0.05),SOFA评分较高(P<0.05),液体负荷量较大(P<0.05)。72 h两组EGDT目标参数及PICCO参数均差异有统计学意义,相对复苏成功组,复苏失败组的容量指标(ITBI、GEDI、CVP)和EVLWI显著增高(P<0.01),尿量(P<0.05)、心脏泵功能指标(CO:P<0.05;CI:P<0.01;GEF:P<0.05)和后负荷水平(SVRI:P<0.01;MAP:P<0.05)及ScvO2(P<0.01)较低,乳酸水平(P<0.01)、SOFA评分(P<0.01)和液体负荷量(P<0.01)更高。结论对于完成EGDT后的感染性休克患者,PiCCO监测血流动力学指标可及时全面和敏感地反映心脏前后负荷、心肌收缩功能水平和液体负荷程度,较准确地分析评价治疗策略和疗效,有望帮助临床实现最佳容量与最佳血流动力学效应,提高复苏成功率。
More
Translated text
Key words
pulse indicator continuous cardiac output,EGDT,sepsis shock,hemodynamics,fluid resuscitation
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined