WeChat Mini Program
Old Version Features

From Image Annotation to Image Description

Neural Information Processing Lecture Notes in Computer Science(2012)

International Institute of Information Technology

Cited 59|Views2
Abstract
In this paper, we address the problem of automatically generating a description of an image from its annotation. Previous approaches either use computer vision techniques to first determine the labels or exploit available descriptions of the training images to either transfer or compose a new description for the test image. However, none of them report results on the effect of incorrect label detection on the quality of the final descriptions generated. With this motivation, we present an approach to generate image descriptions from image annotation and show that with accurate object and attribute detection, human-like descriptions can be generated. Unlike any previous work, we perform an extensive task-based evaluation to analyze our results.
More
Translated text
Key words
Natural Language Processing,Knowledge-based Information Systems,Information Retrieval,Natural Language Generation
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined