基本信息
浏览量:1759

个人简介
Schatz is a theoretician who studies the optical, structural and thermal properties of nanomaterials, including plasmonic nanoparticles, DNA and peptide nanostructures, and carbon-based materials, with applications in chemical and biological sensing, electronic and biological materials, high performance fibers, and solar energy. His past work has also been concerned with understanding the dynamics of chemical reactions in the gas phase and in gas-surface collisions.
In the field of chemical reaction dynamics, Schatz was one of the pioneers in the application of quantum scattering methods to determine the cross sections and rates of simple gas phase reactions such as H + H2. He was also active in using these methods to describe the spectra of transition states, and he was involved in the discovery of resonances in a number of chemical reactions, including F + H2, Cl + HCl and I + HI. In addition, he has developed quasiclassical methods for describing state-resolved collision processes involving polyatomic molecules, and he has developed potential energy surfaces for many benchmark reactions. With these methods and surfaces, he was involved in early studies of many reactions important in combustion and atmospheric chemistry, including OH + H2 and OH + CO, and he has contributed to studies of reactions involved in the low earth orbit environment and nonequilibrium materials chemistry, including reactions of hyperthermal atomic oxygen ( and other atoms) with small molecules and with surfaces. In addition, he has worked actively in the theory and modeling of the mechanical properties of hard materials, including diamond films, graphene and carbon nanotubes.
In the field of chemical reaction dynamics, Schatz was one of the pioneers in the application of quantum scattering methods to determine the cross sections and rates of simple gas phase reactions such as H + H2. He was also active in using these methods to describe the spectra of transition states, and he was involved in the discovery of resonances in a number of chemical reactions, including F + H2, Cl + HCl and I + HI. In addition, he has developed quasiclassical methods for describing state-resolved collision processes involving polyatomic molecules, and he has developed potential energy surfaces for many benchmark reactions. With these methods and surfaces, he was involved in early studies of many reactions important in combustion and atmospheric chemistry, including OH + H2 and OH + CO, and he has contributed to studies of reactions involved in the low earth orbit environment and nonequilibrium materials chemistry, including reactions of hyperthermal atomic oxygen ( and other atoms) with small molecules and with surfaces. In addition, he has worked actively in the theory and modeling of the mechanical properties of hard materials, including diamond films, graphene and carbon nanotubes.
研究兴趣
论文作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
作者统计
#Papers: 1734
#Citation: 138625
H-Index: 158
G-Index: 334
Sociability: 8
Diversity: 3
Activity: 259
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn