WeChat Mini Program
Old Version Features

Research on Variable-Length Control Chart Pattern Recognition Based on Sliding Window Method and SECNN-BiLSTM

Tao Zan, Xiaolong Jia, Xiaoyu Guo,Min Wang,Xiangsheng Gao, Peng Gao

Scientific reports(2025)

Beijing University of Technology

Cited 0|Views8
Abstract
Control charts, as essential tools in Statistical Process Control (SPC), are frequently used to analyze whether production processes are under control. Most existing control chart recognition methods target fixed-length data, failing to meet the needs of recognizing variable-length control charts in production. This paper proposes a variable-length control chart recognition method based on Sliding Window Method and SE-attention CNN and Bi-LSTM (SECNN-BiLSTM). A cloud-edge integrated recognition system was developed using wireless digital calipers, embedded devices, and cloud computing. Different length control chart data is transformed from one-dimensional to two-dimensional matrices using a sliding window approach and then fed into a deep learning network combining SE-attention CNN and Bi-LSTM. This network, inspired by residual structures, extracts multiple features to build a control chart recognition model. Simulations, the cloud-edge recognition system, and engineering applications demonstrate that this method efficiently and accurately recognizes variable-length control charts, establishing a foundation for more efficient pattern recognition.
More
Translated text
Key words
Variable-length control chart,Pattern recognition,Sliding window method,SECNN-BiLSTM,Cloud computing
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined