Thermodynamic modeling of CsF with LiF-NaF-KF for molten fluoride-fueled reactors

Journal of Molecular Liquids(2024)

引用 0|浏览0
暂无评分
摘要
Gibbs energy models were developed to describe the thermochemical behavior of CsF in molten FLiNaK (46.5LiF-11.5NaF-42KF mol%), a proposed molten salt reactor (MSR) fuel solvent and coolant, as cesium is of concern due to its high radiotoxicity and volatility. Initially, it was necessary to obtain an more accurate Gibbs energy function for CsF which required fitting parameters to reported vapor pressures over condensed phase CsF. The pseudo-binary systems CsF-LiF, CsF-NaF and CsF-KF were then evaluated utilizing phase equilibria and enthalpy of mixing (ΔmixH) values, together with original differential scanning calorimetry (DSC) measurements performed for the CsF-LiF and CsF-KF systems. The CsF-LiF-NaF, CsF-LiF-KF and CsF-NaF-KF pseudo-ternary system representations were obtained by interpolation of the constituent pseudo-binary systems, with DSC measurements performed for the CsF-LiF-NaF system to corroborate the calculated liquidus temperature. Ultimately, the pseudo-ternary systems were interpolated to obtain Gibbs energy models for the pseudo-quaternary CsF-LiF-NaF-KF system, supported by DSC measurements at low CsF compositions (1–10 mol%), yielding computed equilibria and cesium-containing vapor pressures that compare favorably with reported values. The Molten Salt Thermal Properties Database – Thermochemical (MSTDB-TC) was subsequently expanded to include these Gibbs energy models allowing description of the thermochemical behavior of the CsF-LiF-NaF-KF system.
更多
查看译文
关键词
MSR,Molten salt,FLiNaK,Cesium,CALPHAD,Phase diagram,Volatile fission products,Thermodynamics,Vapor pressure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要