Investigating fretting wear mechanisms in Ti-6Al-4V: insights from residual stress and equivalent plastic strain analysis

Liwen Feng,Xiangyan Ding, Yinghui Zhang,Ning Hu,Xiaoyang Bi

Industrial Lubrication and Tribology(2024)

引用 0|浏览1
暂无评分
摘要
Purpose The study delves into the influence of wear cycles on these parameters. The purpose of this paper is to identify characteristic patterns of σRS and εPEEQ that discern varying wear situations, thereby contributing to the enrichment of wear theory. Furthermore, the findings serve as a foundational basis for nondestructive and in situ wear detection methodologies, such as nonlinear ultrasonic detection, known for its sensitivity to σRS and εPEEQ. Design/methodology/approach This paper elucidates the wear mechanism through the lens of residual stress (σRS) and plastic deformation within distinct fretting regimes, using a two-dimensional cylindrical/flat contact model. It specifically explores the impact of the displacement amplitude and cycles on the distribution of residual stress and equivalent plastic strain (εPEEQ) in both gross slip regime and partial slip regimes. Findings Therefore, when surface observation of wear is challenging, detecting the σRS trend at the center/edge, region width and εPEEQ distribution, as well as the maximum σRS distribution along the depth, proves effective in distinguishing wear situations (partial or gross slip regimes). However, discerning wear situations based on εPEEQ along the depth direction remains challenging. Moreover, in the gross slip regime, using σRS distribution or εPEEQ along the width direction rather than the depth direction can effectively provide feedback on cycles and wear range. Originality/value This work introduces a novel perspective for investigating wear theory through the distribution of residual stress (σRS) and equivalent plastic strain (εPEEQ). It presents a feasible detection theory for wear situations using nondestructive and in situ methods, such as nonlinear ultrasonic detection, which is sensitive to σRS and εPEEQ. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0005/
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要