Preserved Structure and Function of Human Serum Albumin Self-folded in the Oxidative Cytoplasm of Escherichia coli

Journal of Biotechnology(2024)

引用 0|浏览0
暂无评分
摘要
Human serum albumin (HSA), a polypeptide featuring 17 disulfide bonds, acts as a crucial transport protein in human blood plasma. Its extended circulation half-life, mediated by FcRn (neonatal Fc receptor)-facilitated recycling, positions HSA as an excellent carrier for long-acting drug delivery. However, the conventional method of obtaining HSA from human blood faces limitations due to availability and potential contamination risks, such as blood-borne diseases. This study introduced SHuffle, an oxidative Escherichia coli (E. coli) expression system, for the production of recombinant HSA (rHSA) that spontaneously self-folds into its native conformation. This system ensures precise disulfide bond formation and correct folding of cysteine-rich rHSA, eliminating the need for chaperone co-expression or domain fusion of a folding enhancer. The purified rHSA underwent thorough physicochemical characterization, including mass spectrometry, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, esterase-like activity assay, and size exclusion chromatography, to assess critical quality attributes. Importantly, rHSA maintained native binding affinity to FcRn and the albumin-binding domain. Collectively, our analyses demonstrated a high comparability between rHSA and plasma-derived HSA. The expression of rHSA in E. coli with an oxidizing cytosol provides a secure and cost-effective approach, enhancing the potential of rHSA for diverse medical applications.
更多
查看译文
关键词
Recombinant protein,Human serum albumin,Escherichia coli,Oxidizing cytosol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要