Ameliorative Potential of Bone Marrow-Derived Mesenchymal Stem Cells Versus Prednisolone in a Rat Model of Lung Fibrosis: A Histological, Immunohistochemical, and Biochemical Study.

Amany Mohamed Shalaby, Shaimaa Mohamed Abdelfattah Hassan,Hanim Magdy Abdelnour,Sulaiman Mohammed Alnasser,Mohammed Alorini, Fatima A Jaber,Mohamed Ali Alabiad, Asmaa Abdullatif,Mohamed Mahmoud Abdelrahim Elshaer, Seham Ahmed Mohammed Abdel Aziz,Eman M A Abdelghany

Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada(2024)

引用 0|浏览0
暂无评分
摘要
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要