Nano‐engineering in zinc‐based catalysts for CO2 electroreduction: Advances and challenges

Carbon Neutralization(2024)

引用 0|浏览0
暂无评分
摘要
AbstractElectrocatalytic CO2 reduction (CO2RR), an emerging sustainable energy technology to convert atmospheric CO2 into value‐added chemicals, has received extensive attention. However, the high thermodynamic stability of CO2 and the competitive hydrogen evolution reaction lead to poor catalytic performances, hardly meeting industrial application demands. Due to abundant reserves and favorable CO selectivity, zinc (Zn)‐based catalysts have been considered one of the most prospective catalysts for CO2‐to‐CO conversion. A series of advanced zinc‐based electrocatalysts, including Zn nanosheets, Zn single atoms, defective ZnO, and metallic Zn alloys, have been widely reported for CO2RR. Despite significant progress, a comprehensive and fundamental summary is still lacking. Herein, this review provides a thorough discussion of effective modulation strategies such as morphology design, doping, defect, heterointerface, alloying, facet, and single‐atom, emphasizing how these methods can influence the electronic structure and adsorption properties of intermediates, as well as the catalytic activity of Zn‐based materials. Moreover, the challenges and opportunities of Zn‐based catalysts for CO2RR are also discussed. This review is expected to promote the broader application of efficient Zn‐based catalysts in electrocatalytic CO2RR, thus contributing to a future of sustainable energy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要