Snow and glacier melt contributions to streamflow on James Ross Island, Antarctic Peninsula

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Abstract. The Antarctic Peninsula is experiencing a rapid increase in air temperature, which has a major impact on the entire ecosystem, including the runoff process. Although water availability plays an important role in polar ecosystems, runoff generation in the Antarctic Peninsula region is still poorly understood. We analysed the variability in rain, snow and glacier contributions to runoff in relation to climate variability in a small, partly glaciated catchment on James Ross Island in the north-eastern Antarctic Peninsula. We used the hydrological model HBV to simulate the runoff process for the period 2010/11–2020/21 at a daily resolution. The model was calibrated against both measured discharge and glacier mass balance. Model simulations showed the negative mass balance of Triangular Glacier for 9 out of 11 study years with an average annual mass loss of 49 mm water equivalent. About 92 % of the annual runoff occurred between October and May. On average, peak runoff occurred in the second half of the summer season due to the combination of strong glacier and snow melt. The majority (76 %) of runoff originated from snowmelt, 14 % originated from glacier melt and 10 % from rainfall. The contribution of snowmelt to total runoff was higher in colder years with more precipitation. In contrast, glacier melt contributed dominantly during warmer years with less precipitation. Our simulation showed the presence of significant runoff-generating events outside the usual high summer runoff measurement season.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要