Room Temperature Lattice Thermal Conductivity of GeSn Alloys.

Omar Concepción, Jhonny Tiscareño-Ramírez, Ada Angela Chimienti, Thomas Classen,Agnieszka Anna Corley-Wiciak, Andrea Tomadin,Davide Spirito, Dario Pisignano, Patrizio Graziosi,Zoran Ikonic, Qing Tai Zhao,Detlev Grützmacher, Giovanni Capellini, Stefano Roddaro,Michele Virgilio,Dan Buca

ACS applied energy materials(2024)

引用 0|浏览2
暂无评分
摘要
CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1-xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C-100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要