The empirical study of tweet classification system for disaster response using shallow and deep learning models

Kholoud Maswadi, Ali Alhazmi, Faisal Alshanketi,Christopher Ifeanyi Eke

Journal of Ambient Intelligence and Humanized Computing(2024)

引用 0|浏览0
暂无评分
摘要
Disaster-based tweets during an emergency consist of a variety of information on people who have been hurt or killed, people who are lost or discovered, infrastructure and utilities destroyed; this information can assist governmental and humanitarian organizations in prioritizing their aid and rescue efforts. It is crucial to build a model that can categorize these tweets into distinct types due to their massive volume so as to better organize rescue and relief effort and save lives. In this study, Twitter data of 2013 Queensland flood and 2015 Nepal earthquake has been classified as disaster or non-disaster by employing three classes of models. The first model is performed using the lexical feature based on Term Frequency-Inverse Document Frequency (TF-IDF). The classification was performed using five classification algorithms such as DT, LR, SVM, RF, while Ensemble Voting was used to produce the outcome of the models. The second model uses shallow classifiers in conjunction with several features, including lexical (TF-IDF), hashtag, POS, and GloVe embedding. The third set of the model utilized deep learning algorithms including LSTM, LSTM, and GRU, using BERT (Bidirectional Encoder Representations from Transformers) for constructing semantic word embedding to learn the context. The key performance evaluation metrics such as accuracy, F1 score, recall, and precision were employed to measure and compare the three sets of models for disaster response classification on two publicly available Twitter datasets. By performing a comprehensive empirical evaluation of the tweet classification technique across different disaster kinds, the predictive performance shows that the best accuracy was achieved with DT algorithm which attained the highest performance accuracy followed by Bi-LSTM models for disaster response classification by attaining the best accuracy of 96.46
更多
查看译文
关键词
Tweet classification,Natural language processing,Machine learning,Disaster response,Deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要