Enhanced thermoelectric properties of carbon nanotubes/polyaniline fibers through engineering doping level and orientation

Composites Science and Technology(2024)

引用 0|浏览0
暂无评分
摘要
The rapid progress of miniaturized wearable electronics has put forward great requirements for organic fiber-based thermoelectric (TE) generators. Despite polyaniline (PANI) exhibits many outstanding attributes such as facile synthesis and low cost, as well as good environmental and thermal stability, only a few PANI-based fibers were fabricated and their TE efficiency needs to be further improved. In this work, the TE performance of wet-spun carbon nanotubes (CNTs)/PANI fibers was improved by synergistic engineering doping level of PANI and orientation of the fibers. The doping degree was optimized by varying coagulation baths, bath durations, and dopant loadings in the spinning solution, followed by fixing process during air drying to decrease shrinkage and enhance orientation of the fiber. Hexane coagulated CNTs/PANI fibers exhibited a higher doping degree of PANI compared to that of acetone and ethyl acetate, resulting in a maximum TE power factor of 77.4 μW m-1K-2 for 71 wt% CNTs/PANI fibers at PANI/dopant molar ratio of 2:1.25. Further fixing process induced a more oriented structure along the fibers, facilitating carrier transport and contributing to a significantly increased conductivity of 2155 S cm-1. Consequently, the CNTs/PANI fibers reached an optimal power factor of 91.8 μW m-1K-2. With outstanding TE performance and mechanical properties, the resultant fibers were assembled to fabricate a flexible TE generator, which generated a high output power of 2.5 nW with a temperature gradient of 10 K. These results demonstrate the potential of high-performance CNTs/PANI fibers to harvest body heat for the power supply of the wearable electronics.
更多
查看译文
关键词
carbon nanotubes/polyaniline fiber,thermoelectric,wet-spinning,doping level,orientation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要