Generating Multi-Depth 3D Holograms Using a Fully Convolutional Neural Network.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2024)

引用 0|浏览6
暂无评分
摘要
Efficiently generating 3D holograms is one of the most challenging research topics in the field of holography. This work introduces a method for generating multi-depth phase-only holograms using a fully convolutional neural network (FCN). The method primarily involves a forward-backward-diffraction framework to compute multi-depth diffraction fields, along with a layer-by-layer replacement method (L2RM) to handle occlusion relationships. The diffraction fields computed by the former are fed into the carefully designed FCN, which leverages its powerful non-linear fitting capability to generate multi-depth holograms of 3D scenes. The latter can smooth the boundaries of different layers in scene reconstruction by complementing information of occluded objects, thus enhancing the reconstruction quality of holograms. The proposed method can generate a multi-depth 3D hologram with a PSNR of 31.8 dB in just 90 ms for a resolution of 2160 × 3840 on the NVIDIA Tesla A100 40G tensor core GPU. Additionally, numerical and experimental results indicate that the generated holograms accurately reconstruct clear 3D scenes with correct occlusion relationships and provide excellent depth focusing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要